Eastern North Carolina Society of Gastroenterology Nurses and Associates

New Bern, North Carolina

CarolinaEast Medical Center Department of Gastroenterology

CAROLINA EAST

Dr. Sean McGarr DO, FACG Gastroenterologist Advanced Therapeutic Endoscopist

ENCSGNA Spring Fling March 10 & 11, 2023

Learning Objectives

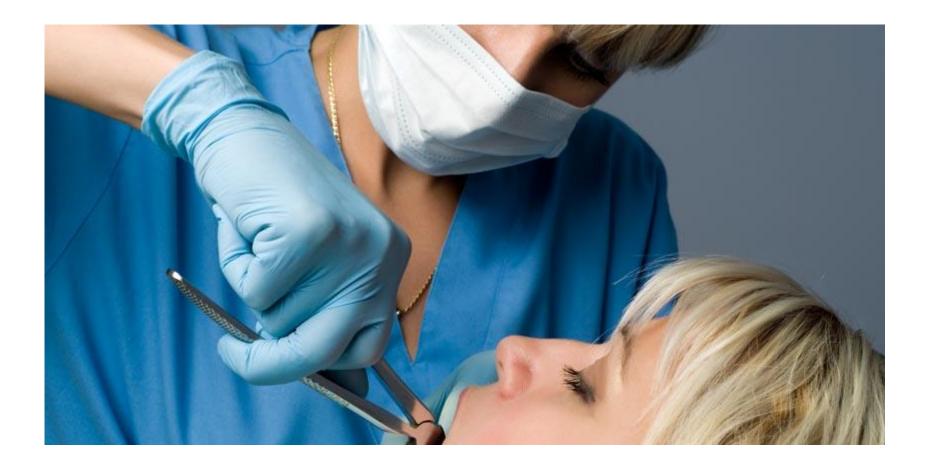
- 1. Historical review and the bugs
- 2. FDA/Scopes
- 3. Learn about the factors that impact duodenoscope contamination and risk of endoscope-associated infections (EAIs)
- 4. Discuss the current data on the effectiveness of duodenoscope processing.
- 5. Describe new technologies designed to address the limitations of duodenoscope processing

Infection control

- Beginning of modern infection control 1847 (Semmelweis)
 - From autopsies to babies; hand washing, gloves
- Goodyear rubber company, gloves 1852 (Halsted)
- Hospital reform, 1858 (Florence Nightingale)
- Bad air 1864 (Lister) (Pasteur)
 - Microbes, antiseptics, fermentation and wounds
- International Medical Congress, Philadelphia 1876 (Keen)
 - Carpets, furniture, carbolic solution, soap & water, boiled instruments
- Sterile gowns, attire 1883 (Neuber)
- Heat Sterilization > Chemical, 1891 (Bergmann)

Infection control

- 1900's, 4,000 hospitals in US, infection rate was lower the 1800's
 - Hospital mortality rate 25% -> 10%
 - TB, diphtheria, measles, typhoid, wound infections (PCN)
- Post-World War II, 1946 CDC
- Hospital employees were at significant risk
 - TB 50-100% Nurses, Medical students, converted skins test (+), 20% (+)
- World Health Organization, 1952 (Hepatitis)
 - No more chemical disinfectants for surgical instruments
- First ever reported antibiotic resistant bacteria (MRSA), 1962*
- Joint Commission on Accreditation of Healthcare Organization
 - 1st Infection Control Program to receive accreditation, 1976



Infection control

- HIV/AIDS, Hep B/C (1980's)
 - Sharps, barriers, autoclaves
- Standard infection prevention
 - Instruments cleaning, decontamination, equipment, surfaces
 - Sterilization
 - Hygiene
 - Personal protective equipment (PPE)
 - -Standards of equipment
- In the UK & England 2013
 - Single use instruments*** (Dentistry)
- Covid-19

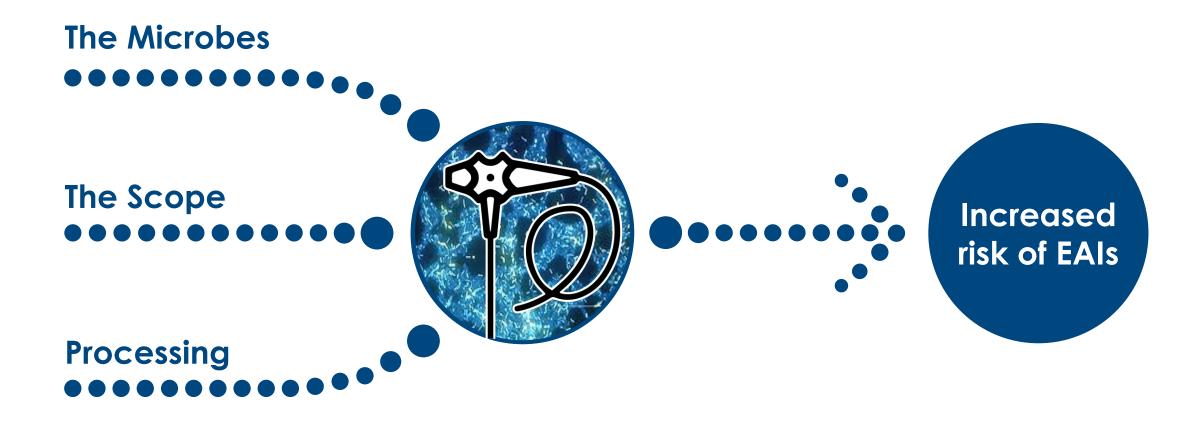
The value of single use dental instruments DENTAL REVIEW & NEWS EDITOR; 03 June 2016

Summery

- Use of high-quality single-use instruments can provide significant advantages to dentists in general dental practice. Advantages are sterility, convenience, reduced operating costs and efficiencies.
- The purchase costs of the single-use instrument option are less significant when the significant hidden costs of reusable instruments are considered, and their cost in use is typically significantly less than the reusable instrument option.
- Recent advances in the way that these instruments may be recycled have effectively addressed environmental concerns.

Gastroenterology

Duodenoscope Contamination

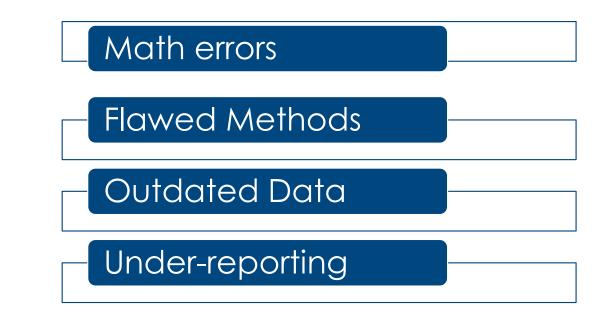

Which microbes are of concern?

What is the risk of infection?

How effective is HLD?

Is there anything new?

Contaminated duodenoscopes lead to EAIs



The Microbes

 The current risk of EAIs is still unknown
 MDROs are difficult to detect which may result in silent spread Currently, there is no credible estimate of the true risk of an EAI from ERCP performed with a re-usable duodenoscope.

Previously cited risk estimates were reevaluated and found to be incorrect.

Ofstead et al, . Re-evaluating endoscopy-associated infection risk estimates and their implications. American Journal of Infection Control. 2013(41):734-6.

The Microbes

Klebsiella pneumoniae E. coli

CARBAPENEM-RESISTANT **ENTEROBACTERIACEAE**

THREAT LEVEL URGENT

100

PSEUDOMONAS AERUGINOSA

MULTIDRUG-RESISTANT

The most common bacteria associated with EAIs are also on the CDC's antibiotic resistance threat list

The Microbes – Detection can be difficult

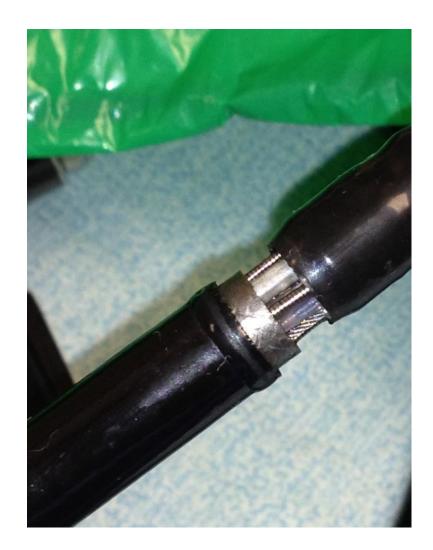
Most facilities are ill-equipped to detect newly emerging MDROs

Reference	Outbreak Organism	Discovery of Outbreak
Wendorf et al. Seattle, WA	ESBL-E.coli	Washington State Surveillance Program
Epstein et al. Chicago, III	NDM-E.coli	Third party clinical lab, CDC
Potron et al. France	E.coli and KI. pneumoniae _{OXA-204}	Reference Lab research project on OXA-204 resistance identifies regional, dual outbreak
Kim et al Los Angeles, CA	KI. pneumoniae bla _{oxa-232}	OXA-232 identified via unrelated research project

The Microbes: Why are EAIs hard to detect?

Periprocedural Antibiotics Mask Transmissions

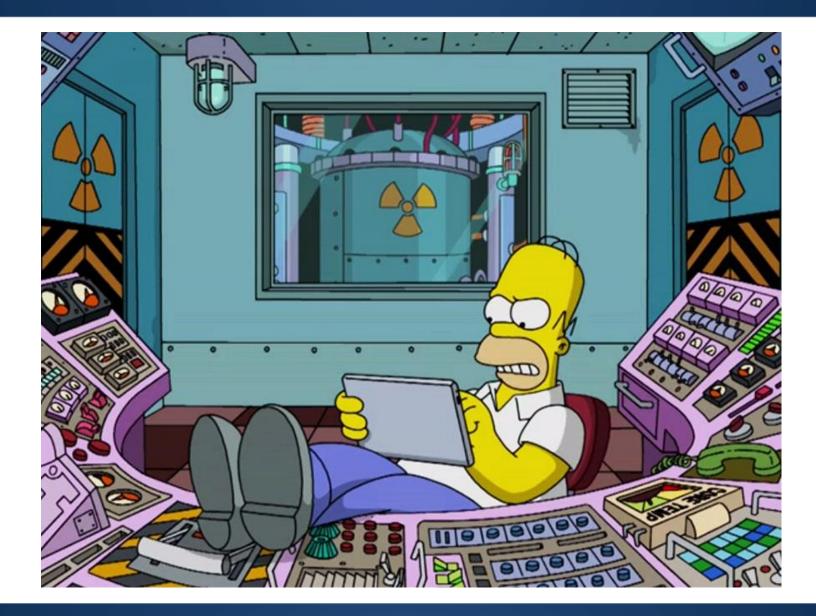
Unremarkable profile of infectious agent

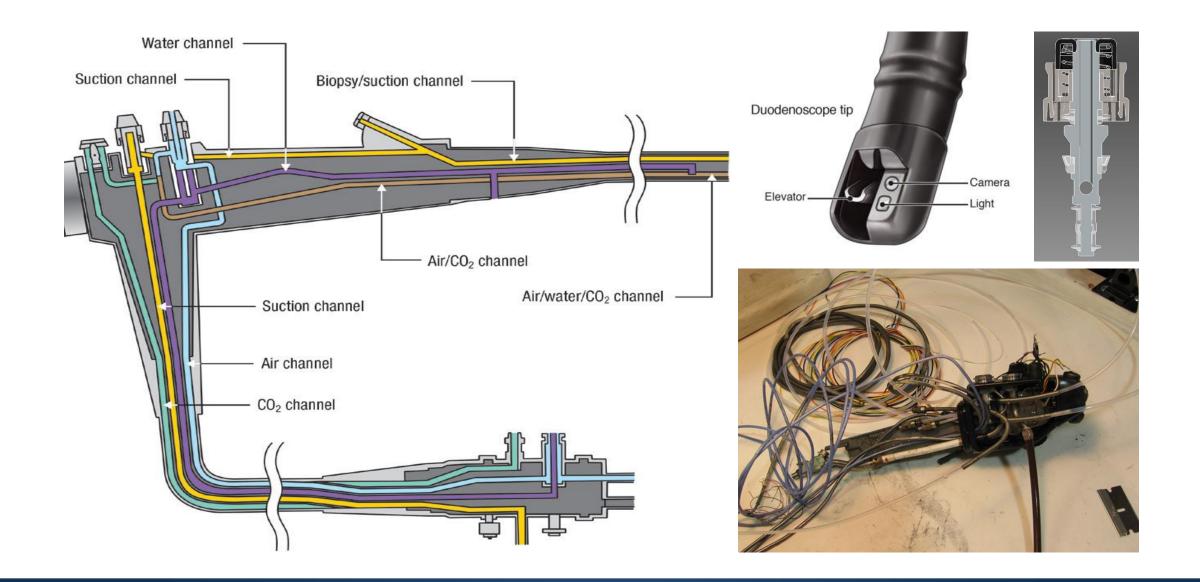

Asymptomatic colonization & lack of screening

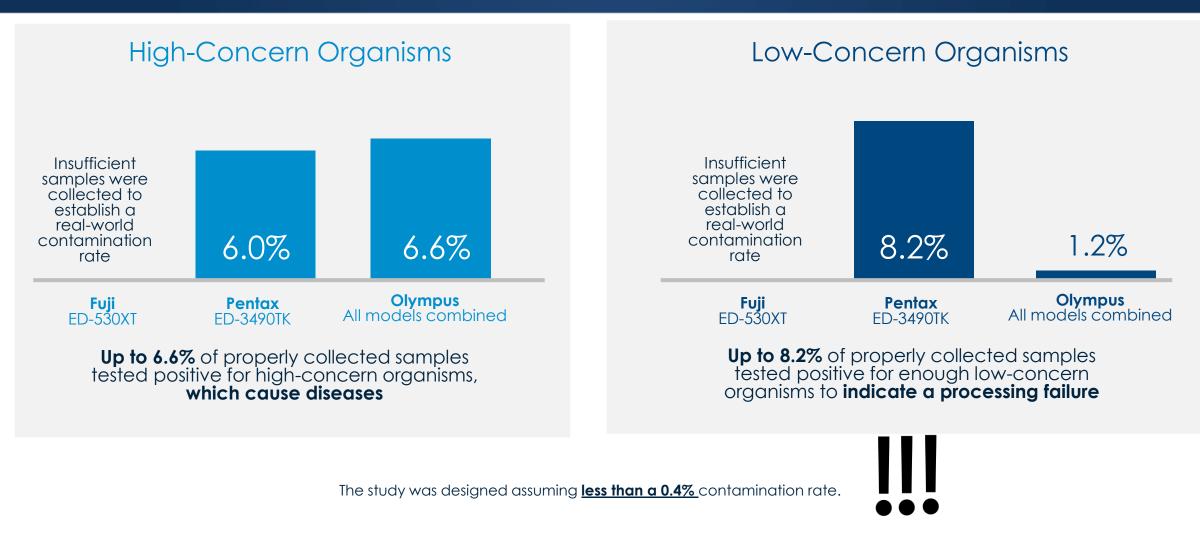
Time between ERCP and symptoms: weeks, months, years

Infection may present in sites unrelated to ERCP procedure

MDROs may be difficult to detect


The Scopes?


Human error


The Scope

- 1. One in 15 duodenoscopes are contaminated with pathogens despite adherence to IFUs and guidelines.
- 2. Transmission of pathogens occurs despite adherence to IFUs and guidelines.

Duodenoscope complexity impedes effective processing

The Scope: Results from FDA 522 studies

Olympus 522 site : https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pss.cfm?t_id=354&c_id=3726 Fujifim 522 site: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pss.cfm?t_id=353&c_id=3725 Pentax: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pss.cfm?t_id=355&c_id=3727

High-Concern & Low-Concern Organisms

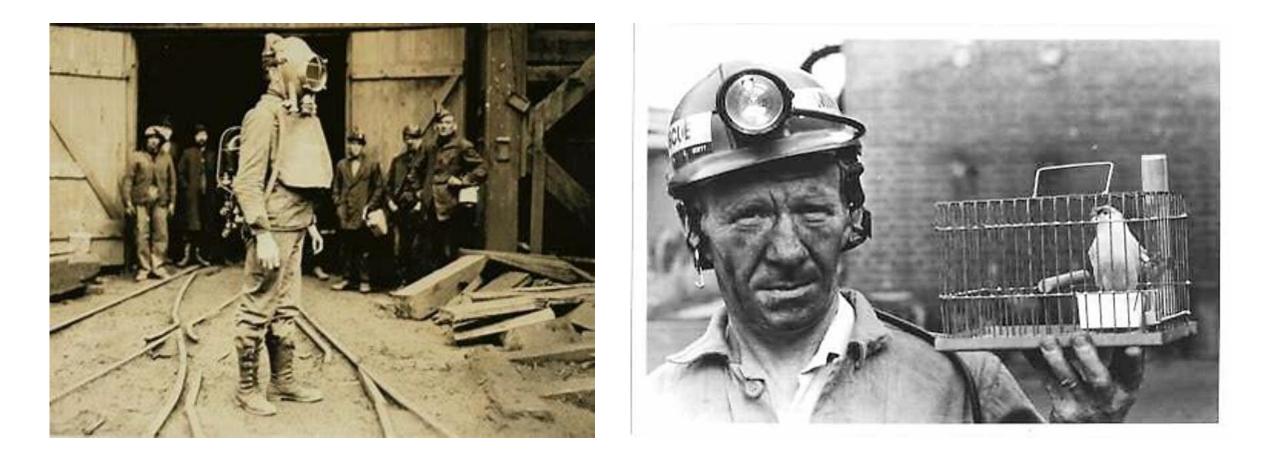
- Pathogenic bacteria or fungi that cause disease
- Present in low numbers in environmental reservoirs
- Allowable limit = 0
- Examples: E. coli, Klebsiella spp, Pseudomonas aeruginosa

 Bacteria or fungi that may cause disease under certain circumstances

Low-Concern

- "Environmentals"
- Often not-counted
- Allowable limit ≤ 100 colonies
- Examples: Staphylococcus, Streptococcus, Bacillus

Low Concern ≠ No Concern


Only spore-formers should be present (Bacillus spp)

> 100 CFU indicates HLD Failure

Indicates possible error in sampling

Act as the "canary in the coal-mine"

Appalachians Canary

The Scope: Outbreak Investigations

Duodenoscopeassociated outbreaks where investigations showed no breach in processing protocols and/or negative culture results.

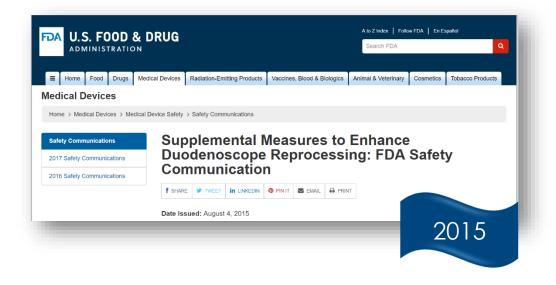
Location Reference	Culture Results	Errors in Processing?	
Boston, MA Shenoy 2019	Negative	No	
Cleveland, OH Fraser 2004	Negative	No	
Los Angeles, CA Kim 2015	Negative	No	
Park Ridge, III Epstein 2014	Negative	No	
Milwaukee, WI Smith 2015	Negative	No	
Los Angeles, CA US Senate Report, 2016	Not Reported	No	
Pittsburgh, PA Marsh 2015	Negative	No	
Seattle, WA Wendorf, 2015	Positive	No	
New York, NY US Senate Report, 2016	Negative	Not Reported	
Berlin, Germany Kola 2015	Negative	Not Reported	
Claremont- Ferrand, France Aumeran 2010	Positive	No	
Rotterdam, Netherlands Verfaille 2015	Positive	No	

EAIs

FDA/Single use duodenscopes

- Roughly 1/2 million + ERCP's
- Highly intricate scopes
- Transmission of MDRO 1980's
- Multiple outbreaks across world
- 2019 FDA post-market surveillance, using HLD*
 - Voluntary standardization
 - Endoscope cultures
 - Innovation, new duodenscopes

- Single use duodenoscopes
 2019
- Single use endoscopes 2021
- Single use cystoscopes 2021
- Single use colonoscopes 2023


Since 2015 the FDA has released more safety communications than any other medical devices

One of the biggest questions today is on the effectiveness of the FDA recommended enhanced measures.

Processing: FDA recommendations

- Repeat HLD (+/- manual)
- HLD + Terminal Sterilization (Ethylene oxide)
- HLD + Liquid Chemical Sterilization
- Microbiological Culture

"The FDA believes the best solution to reducing the risk of disease transmission by duodenoscopes is through *innovative device designs that make reprocessing easier, more effective, or unnecessary.*"

FDA – Changed "transition" to "use"

Use Duodenoscopes with Innovative Designs to Enhance Safety: FDA Safety Communication

- Why? Concerns with cleaning and contamination data.
 Options? Fully disposable or designs that include disposable
 - components

- Olympus TJF-180V recalled
- Pentax ED-3490TK/ED34-i10T withdrawn
- Fujifilm ED-530XT withdrawn

Manufacturer	Fina	al Results of 2015 522 Study	Interi	Interim Results of 2019 522 Study			
	Model	High Concern Organism Results	Model	High Concern Organism Results			
Fujifilm	ED-530XT	Not completed, device withdrawn	ED-580XT	0.5% (2/417, 57% study completion)			
Olympus	TJF-Q180V	4.1% (35/859)	TJF-Q190V	In progress			
	TJF-160F/VF	6.6% (56/850)					
	JF-140F and PJF-160	Not completed, device withdrawn					
Pentax	ED-3490TK	6.0%	ED34-i10T2	In progress			
		(48/794)	ED32-i10	In progress			
			ED34-i10T	Device withdrawn			
IX NIAN		I X = N A K K = I A K K D		$ $ \land $ $ \times $ $ \times $ $ \wedge $			

- Very limited data
- High-concern organisms not the only issue
- Manufacturer's performing this testing introduces avoidable bias

FDA Safety Communication: 05Apr22 Quality Control program now REQUIRED for reusable duodenoscopes

"Institute a quality control program that includes sampling, microbiological culturing, and other monitoring methods." "Consider reprocessing with supplemental measures such as sterilization or use of liquid chemical sterilant processing system consistent with the device's labeling"

"Monitor your reprocessing procedures. Examples of monitoring are sampling and culturing..."

Processing: Enhanced Measures

Limited data indicate that Repeat HLD and Liquid Chemical Sterilization do not effectively eliminate duodenoscope contamination.

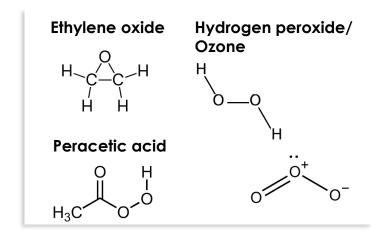
Reference	2X HLD				Liquid Chemical Sterilization		
	N	% Growth	% High Concern	N	% Growth	% High Concern	
Gromski 2020	453	1.8% (8)	0.44% (2)	425	2.1% (9)	0.47% (2)	
Rex 2017	Phase 1:627 Phase 2: 420 Phase 3:783	Phase 1: 9.4% (59) Phase 2: 4.8% (20) Phase 3: 4.9% (38)	Phase 1: 0.8% (5) Phase 2: 0.2 (1) Phase 3: 0.3 (2)	NA	NA	NA	

Processing: Enhanced Measures

Limited data indicate that Repeat HLD and Ethylene Oxide Sterilization do not effectively eliminate duodenoscope contamination.

Reference		HLD			2X HLD			e Oxide Gas Ste	rilization
	N	% Growth	% High Concern	N	% Growth	% High Concern	N	% Growth	% High Concern
Visrodia 2017	20	60% (12)	55% (11)	18	44.4% (8)	44.4% (8)	NA	NA	NA
Snyder 2017	174	16.1% (28)	NA	169	16.0% (27)	NA	173	22.5% (39)	NA
Bartles 2018	1399	7.3% (102)	0.4% (5)	1526	8.0% (122)	0.2% (3)	NA	NA	NA

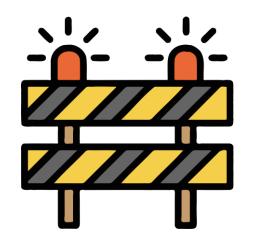
New Technologies: Why are they needed?

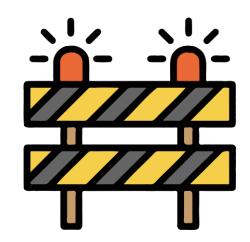

Area of Opportunity	Description	Available Technology		
Device Design Complexity	Endoscope design complexity impedes effective processing	Single-use duodenoscope		
Human Factors	Managing the capabilities and limitations of people to optimize processing performance and reliability.	Single-use duodenoscope **Distal tip barrier** **Single-use end cap**		
Endoscope Processing – Manual Cleaning	 The most important step in processing High error rate Efficacy impeded by complex device design and human factors 	Distal tip barrier Single-use end cap		
Endoscope Processing - Drying	 Critical to prevent biofilm formation High error rate & Ineffective methods 	Single-use duodenoscope		
Endoscope Processing Alternatives	Aimed at improving efficacy and consistency of endoscope processing	Single-use duodenoscope Sterilization		

Sterilization

Sterilization: A process that eliminates all living organisms, including spores.

Low Temperature Sterilization:


- Ethylene oxide
- Hydrogen peroxide/Ozone
- Peracetic acid


Duodenoscope Processing		
Pros	Cons	
 Theoretically failproof History of successful outbreak control 	 Documented failures with all modalities 	
	 May damage devices 	
	 Efficacy dependent on meticulous manual cleaning & drying 	
	 Validated for a finite number of cycles 	

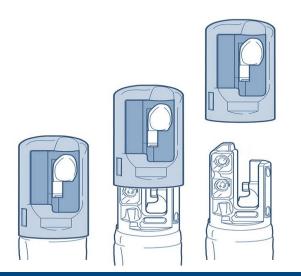
- Device design Reduce Impact of Complexity
- Human Factors
- Endoscope Processing Manual Cleaning
- Endoscope Processing Drying
- Endoscope Processing Alternatives

Distal Tip Barriers

Single-use device that seals the elevator area to reduce contamination of the distal tip during ERCP procedures.

Duodenoscope Processing

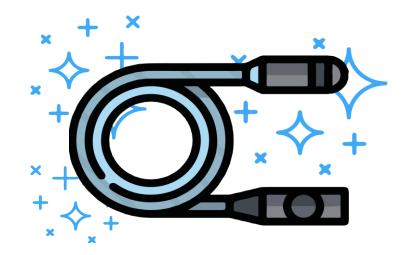
Pros


Cons

- Single-use, sterile
- Instruments passed without contacting the elevator area
- Reduces soil level for hard to clean elevator mechanism
- Partial solution, full processing still required
- FDA cleared for limited models
- Complexities of manual cleaning not eliminated.
- Efficacy data is lacking

- Device design Reduce Impact of Complexity
- Human Factors (?)
- Endoscope Processing Manual Cleaning (?)
- Endoscope Processing Drying
- Endoscope Processing Alternatives

Detachable Single-Use Distal Endcap


Removable, single-use distal cap that improves access to the elevator mechanism during duodenoscope processing.

Duodenoscope Processing		
Pros	Cons	
 Improves access to difficult to clean elevator mechanism during processing 	 Partial Solution, only addresses cleaning of distal tip, does not affect complexity 	
 Single-use, sterile 	 Additional steps added to cleaning process 	
No efficacy data available, post-market studies in process		

- Device design Reduce Impact of Complexity
- Human Factors (?)
- Endoscope Processing Manual Cleaning (?)
- Endoscope Processing Drying
- Endoscope Processing Alternatives

Single-Use Duodenoscopes

Single-Use Duodenoscope that is discarded after use on one patient.

Duodenoscope Processing	
Pros	Cons
 Eliminates the need for device processing. 	
 Eliminates risk of cross- contamination due to ineffective processing. 	Learning Curve

- Device design Reduce Impact of Complexity
- Human Factors
- Endoscope Processing Manual Cleaning
- Endoscope Processing Drying
- Endoscope Processing Alternatives

Considerations

1. ERCP volume?

- 2. How many providers perform ERCP's
- 3. Is there provider consensus on use
- 4. What level (ASGE grade) of ERCP is performed at your center
- 5. What are hospital/local/regional CRE & MDRO

- 6. Annual costs repairs?
- 7. Annual costs reprocessing?
- 8. Annual cost of service contract?
- 9. Has there been any infections?
- 10. What is the frequency of afterhours ERCP's?

ERCP grading scale

June 13, 2020 <u>ERCP</u> The ASGE ERCP (Endoscopic retrograde cholangiopancreatography) grading scale indicates the procedure complexity and predicts the chance of complications.

The ERCP grading scale:

Grade 1

-Deep cannulation of duct of interest, main papilla, sampling -Biliary stent removal/exchange **Grade 2** Biliary stone extraction < 10 mm Treat biliary leaks

Treat extrahepatic benign and malignant strictures

-Place prophylactic pancreatic stents

State 3

- -Biliary stone extraction > 10 mm -Minor papilla cannulation in divisum, and therapy
- -Removal of internally migrated biliary stents
- -Intraductal imaging, biopsy, FNA
- -Management of acute or recurrent pancreatitis
- -Treat pancreatic strictures
- -Remove pancreatic stones mobile and < 5 mm
- -Treat hilar tumors
- -Treat benign biliary strictures, hilum, and above
- -Manage suspected sphincter of Oddi

Networtion (with or without manamatry)

Grade 4

- -Remove internally migrated pancreatic stents
- -Intraductal image-guided therapy
- -Pancreatic stones impacted and/or > 5 mm
- -Intrahepatic stones
- -Pseudocyst drainage, necrosectomy
- -Papillectomy
- -ERCP after Whipple or Roux-en-Y bariatric surgery

FDA/Scopes

- Infection control
- Regulatory environment
- Workflow
- Repair costs
- Water usage
- Solid waste
- Patient preference

Duodenscopes

• SINGLE USE

- Performance
- Infection control
- Operational costs
- Budget/cost variability
- Environmental
- Staff/Safety

• McGarr's USE

- Platform
- Modularity
- Adaptability
- Storage
- Consistency
- Product support

NOTES Natural Orifice Transluminal Endoscopic Surgery

Platform

Modularity

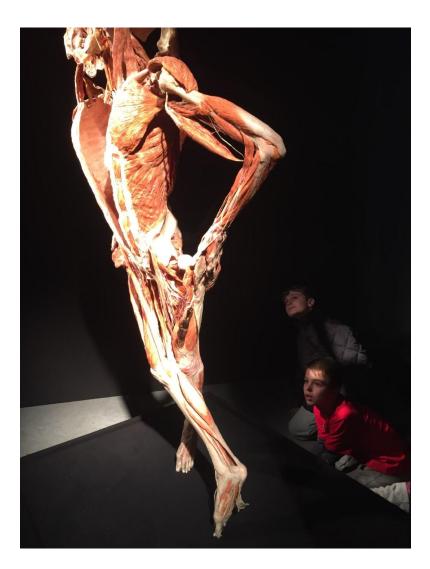
Recycle

Summary

There is no credible estimate of infection risk from reusable duodenoscopes

MDRO transmission is difficult to detect resulting in "silent spread"

Persistent contamination poses an increased risk of pathogen transmission



Current processing technologies do not consistently eliminate contamination

New Technology developments designed to address contamination issues need real-world efficacy data

THE END

